If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+5p-11p-55=0
We add all the numbers together, and all the variables
p^2-6p-55=0
a = 1; b = -6; c = -55;
Δ = b2-4ac
Δ = -62-4·1·(-55)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-16}{2*1}=\frac{-10}{2} =-5 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+16}{2*1}=\frac{22}{2} =11 $
| 2m+7(2m-5)=-163 | | 2x)/(x^2-16))=((2)/(x^2-16))-((1)/(x+4)) | | 9y-6+y=42 | | 14+2d=5d+6 | | (x-5)^4=256 | | -s−10=10+4s | | -(2x-3)=17 | | -7k+4k=8-2k-8k | | 4x-2=2(x+8) | | 0=1/2x^2+1.5x | | 126=n(n-1)/2 | | 7c+9=2c+1+3c | | x²+6x+16=0 | | -6+5x=79 | | 4x-2=2(x+8 | | (2x/x^2-16)=(2/x^2-16)-(1/x+4) | | 8+3h=h-18 | | -9x+1=-161 | | 10*q-7=73 | | -2/4t=48 | | 3q+2q-5=4q+2 | | -4(x+1)-4x=28 | | -14=-2x+3 | | 252=n(n-1) | | -14=-2x3 | | 90=-5(3a-6) | | -24=-4x+1 | | 11x-(7x-4)=4 | | 9-4x=-57 | | 5x/8+1x/12=51/24 | | 6f-26+2f=13-5f | | 2x+10x-6+3x=180 |